
In a nutshell: The adaptive Dormand-Prince method

Given the initial-value problem (IVP)

      

 

1

0 0

,y t f t y t

y t y





we would like to approximate the solution y(t) on the interval [t0, tf] with a maximum error of abs per unit time. This

algorithm uses Taylor series and iteration. We start with an initial h > 0, we will have both minimum and maximum

step sizes hmin and hmax, respectively.

1. Let 0k  .

2. If tk ≥ tf, we are finished: we have approximated values for y(t1) through y(tk), and using cubic splines, we can

approximate values at any point on the interval [t0, tf].

3. If k > N, we will return signalling that too many steps were required to find the approximations.

4. Let

 

 
0

1 1
1 05 5

0 13 3
2 10 10

0 1 24 4
3 5 5

0 1 2 38 8
4 9 9

0 1 2

5

,

,

3
,

4

11 42 40
,

9

4843 19020 16112 477
,

1458

477901 1806240 1495424 46746
,

k k

k k

k k

k k

k k

k k

s f t y

s f t h y hs

s s
s f t h y h

s s s
s f t h y h

s s s s
s f t h y h

s s s
s f t h y h



  

 
   

 

  
   

 

   
   

 

  
  

 

3 4

0 2 3 4 5

6

0 2 3 4 5 6

45927

167904

12985 64000 92750 45927 18656

142464

,

1921409 9690880 13122270 5802111 1902912 534240

21369600

k

k

k

s s

s s s s s
z y h

s f t h z

s s s s s s
y y h

 
 
 

   
 

 

    
 

 each ratio is a weighted average, and y and z both approximate y(tk + h) but z is more accurate1

5. Let abs
4

2

h
a

y z





. ah estimates the ideal step size

6. If a > 1 or h = hmin, we will set
1k kt t h   and set

1ky z  and then increment k.

 If the ideal step size is greater than our current step size, or if the step size

is already the minimum we will allow it, use z to approximate y(tk + h)

7. If 0.9a < ½, update ½h h ,

if 0.9a > 2, update 2h h ,

otherwise update 0.9h ah . Update h with 0.9ah unless this more than doubles or halves its value

8. If h < hmin, set minh h , and

if h > hmax, set maxh h . Don’t let h exceed the lower or upper bounds we’ve set on it

9. Return to Step 2.

Note that Steps 1, 2, 3, and 6, 7, 8, 9 are identical to the adaptive Euler-Heun method, Step 4 only differs in how to

find y and z, and Step 5 only differs by taking the 4th-root of the ratio.

1 Normally, nutshells don’t have such comments, but they are included here for clarity.

Important:

The coefficients in the calculations in Step 4 are written in the form

,0 0 , 1 1
,k k

n s n s
s f t c h y c h

d

   
   

 
.

This is so that you can clearly see that the ratio is a weighed average, as
,0 , 1n n d   . When you are coding

this, however, it is better to use the following:

    ,0 , 1

0 1,k k

n n
s f t c h y c h s s

d d





  
       

  

.

This avoids multiplication by very large coefficients (for example, when multiplying the slopes by very large integers)

and it ensures that we are not multiplying by very small numbers, for 1c  and h may be very small, which may

occur if there is a discontinuity in f, which will occur if, for example, a switch is turned on or off. If you were to

multiply the slopes by ,m

m

c hn
s

d
, if h is very small, it may make this a demormalized number, which will be

calculating a sum of denormalized numbers, which will result in significant loss of precision. The formulation above,

may still result in a denormalized number, but at least the sum will not be calculated at this increased loss of precision.

Acknowledgement:

A special thanks to Aristedes Jose B. Aquino Jr. who observed that one of the signs in one of the coefficients was

incorrect.

