In a nutshell: The adaptive Dormand-Prince method

Given the initial-value problem (IVP)

$$
\begin{aligned}
y^{(1)}(t) & =f(t, y(t)) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}
$$

we would like to approximate the solution $y(t)$ on the interval $\left[t_{0}, t_{f}\right]$ with a maximum error of $\varepsilon_{\text {abs }}$ per unit time. This algorithm uses Taylor series and iteration. We start with an initial $h>0$, we will have both minimum and maximum step sizes $h_{\text {min }}$ and $h_{\text {max }}$, respectively.

1. Let $k \leftarrow 0$.
2. If $t_{k} \geq t_{f}$, we are finished: we have approximated values for $y\left(t_{1}\right)$ through $y\left(t_{k}\right)$, and using cubic splines, we can approximate values at any point on the interval $\left[t_{0}, t_{f}\right]$.
3. If $k>N$, we will return signalling that too many steps were required to find the approximations.

$$
\begin{aligned}
& s_{0} \leftarrow f\left(t_{k}, y_{k}\right) \\
& s_{1} \leftarrow f\left(t_{k}+\frac{1}{5} h, y_{k}+\frac{1}{5} h s_{0}\right) \\
& s_{2} \leftarrow f\left(t_{k}+\frac{3}{10} h, y_{k}+\frac{3}{10} h \frac{s_{0}+3 s_{1}}{4}\right) \\
& s_{3} \leftarrow f\left(t_{k}+\frac{4}{5} h, y_{k}+\frac{4}{5} h \frac{11 s_{0}-42 s_{1}+40 s_{2}}{9}\right)
\end{aligned}
$$

4. Let $s_{4} \leftarrow f\left(t_{k}+\frac{8}{9} h, y_{k}+\frac{8}{9} h \frac{4843 s_{0}-19020 s_{1}+16112 s_{2}-477 s_{3}}{1458}\right)$

$$
s_{5} \leftarrow f\left(t_{k}+h, y_{k}+h \frac{477901 s_{0}-1806240 s_{1}+1495424 s_{2}+46746 s_{3}-45927 s_{4}}{167904}\right)
$$

$$
z \leftarrow y_{k}+h \frac{12985 s_{0}+64000 s_{2}+92750 s_{3}-45927 s_{4}+18656 s_{5}}{142464}
$$

$$
s_{6} \leftarrow f\left(t_{k}+h, z\right)
$$

$$
y \leftarrow y_{k}+h \frac{1921409 s_{0}+9690880 s_{2}+13122270 s_{3}-5802111 s_{4}+1902912 s_{5}+534240 s_{6}}{21369600}
$$ each ratio is a weighted average, and y and z both approximate $y\left(t_{k}+h\right)$ but z is more accurate ${ }^{1}$

5. Let $a \leftarrow \sqrt[4]{\frac{h \varepsilon_{\text {abs }}}{2|y-z|}}$.
ah estimates the ideal step size
6. If $a>1$ or $h=h_{\min }$, we will set $t_{k+1} \leftarrow t_{k}+h$ and set $y_{k+1} \leftarrow z$ and then increment k.

If the ideal step size is greater than our current step size, or if the step size is already the minimum we will allow it, use z to approximate $y\left(t_{k}+h\right)$
7. If $0.9 a<1 / 2$, update $h \leftarrow 1 / 2 h$, if $0.9 a>2$, update $h \leftarrow 2 h$,
otherwise update $h \leftarrow 0.9 a h$. Update h with $0.9 a h$ unless this more than doubles or halves its value
8. If $h<h_{\text {min }}$, set $h \leftarrow h_{\text {min }}$, and if $h>h_{\text {max }}$, set $h \leftarrow h_{\text {max }}$.

Don't let h exceed the lower or upper bounds we've set on it
9. Return to Step 2.

Note that Steps 1, 2, 3, and 6, 7, 8, 9 are identical to the adaptive Euler-Heun method, Step 4 only differs in how to find y and z, and Step 5 only differs by taking the $4^{\text {th }}$-root of the ratio.

[^0]
Important:

The coefficients in the calculations in Step 4 are written in the form

$$
s_{\ell} \leftarrow f\left(t_{k}+c_{\ell} h, y_{k}+c_{\ell} h \frac{n_{\ell, 0} s_{0}+\cdots+n_{\ell, \ell-1} s_{\ell-1}}{d_{\ell}}\right) .
$$

This is so that you can clearly see that the ratio is a weighed average, as $n_{\ell, 0}+\cdots+n_{\ell, \ell-1}=d_{\ell}$. When you are coding this, however, it is better to use the following:

$$
s_{\ell} \leftarrow f\left(t_{k}+\left(c_{\ell} h\right), y_{k}+\left(c_{\ell} h\right)\left(\frac{n_{\ell, 0}}{d_{\ell}} s_{0}+\cdots+\frac{n_{\ell \ell-1}}{d_{\ell}} s_{\ell-1}\right)\right) .
$$

This avoids multiplication by very large coefficients (for example, when multiplying the slopes by very large integers) and it ensures that we are not multiplying by very small numbers, for $c_{\ell} \leq 1$ and h may be very small, which may occur if there is a discontinuity in f, which will occur if, for example, a switch is turned on or off. If you were to multiply the slopes by $\frac{c_{\ell} h n_{\ell, m}}{d_{\ell}} s_{m}$, if h is very small, it may make this a demormalized number, which will be calculating a sum of denormalized numbers, which will result in significant loss of precision. The formulation above, may still result in a denormalized number, but at least the sum will not be calculated at this increased loss of precision.

Acknowledgement:

A special thanks to Aristedes Jose B. Aquino Jr. who observed that one of the signs in one of the coefficients was incorrect.

[^0]: ${ }^{1}$ Normally, nutshells don't have such comments, but they are included here for clarity.

